

International Journal of Financial Management and Economics

P-ISSN: 2617-9210 E-ISSN: 2617-9229 IJFME 2025; 8(1): 575-586 www.theeconomicsjournal.com Received: 11-04-2025 Accepted: 13-05-2025

Dr. Suman Devi Assistant Professor, Drona

Assistant Professor, Drona College of Education, Gurugram, Haryana, India

The effect of climate change on the business: Modern aspects of sustainable development

Suman Devi

DOI: https://www.doi.org/10.33545/26179210.2025.v8.i1.617

Abstract

The accelerating force of planetary upheaval has redefined the very logic of enterprise. No longer peripheral, climate volatility is now a structural variable embedded within capital, production and governance. This study dissects how ecological turbulence dismantles outdated business norms and catalyzes a strategic metamorphosis toward regenerative models. Using empirical patterns from Indian firms, the analysis uncovers a definitive split: entities embracing environmental foresight consistently demonstrate fiscal steadiness, resilience and stakeholder alignment, while those resisting adaptation incur compounding vulnerabilities. Climate responsiveness, therefore, is not merely risk aversion but a reconfiguration of growth within ecological thresholds a survival grammar for 21st-century commerce.

Keywords: Climate-resilience, ESG-integration, business-transformation, sustainable-growth, ecological-risk

1. Introduction

Climate change today presents an unparalleled disruption to global business ecosystems, reshaping markets and redefining sustainable development priorities. Between 2011 and 2020, the world experienced its hottest decade on record, with cascading climatic consequences observed across continents (S&P Global, 2023) [100]. The frequency of billiondollar disasters in the U.S. alone surged from three per year in the 1980s to over 22 annually by 2021-2023, underlining the intensification of climate-linked economic shocks (S&P Global, 2023) [100]. Globally, weather and climate-related events triggered \$1.5 trillion in economic damages during the 2010s triple the losses from the 1970s (World Economic Forum, 2023). From an economic standpoint, continued warming poses immense macroeconomic risks. Swiss Re Institute projects that under a 3.2°C scenario by 2050, global GDP could decline by 18% compared to a stable climate baseline (Insurance Journal, 2021) [98]. Even moderate warming could inflict severe GDP reductions, underscoring climate change as a structural financial threat. These macro-level projections are mirrored at the firm level through direct physical risks such as asset damage, disrupted supply chains, or productivity losses due to extreme temperatures and indirect vulnerabilities from water scarcity and resource instability (S&P Global, 2023) [100]. The UN warns that without decisive mitigation, climate-related disasters could be 40% more frequent by 2030 than in 2015, severely undermining business continuity (S&P Global, 2023) [100].

Beyond physical exposure, transition risks are increasingly material. Firms unprepared for policy shifts (e.g., carbon pricing, emissions caps), clean technology disruptions and ESG-driven market reorientations face stranded assets, rising compliance costs, or reputational backlash. The global shift toward low-carbon economies has intensified stakeholder pressure. ESG-focused funds attracted \$649 billion in new capital by 2021, more than double 2019 inflows, as investors reallocated toward climate-responsible firms (Reuters, 2021) [99]. Companies seen as laggards in sustainability now risk higher capital costs or market exclusion, while sustainability frontrunners benefit from brand loyalty, innovative capacity and stakeholder alignment (PMC, 2021a; PMC, 2021b) [103].

This shift has prompted a corporate governance transformation centered on modern sustainable development. Environmental, Social and Governance (ESG) frameworks have become central to financial assessments, guiding firms in balancing environmental

Corresponding Author: Dr. Suman Devi Assistant Professor, Drona College of Education, Gurugram, Haryana, India responsibility with social and ethical standards. By 2022, sustainable assets surpassed \$30 trillion globally roughly one-fourth of all managed investments demonstrating ESG's institutional prominence (GSIA, 2023). Meanwhile, corporations increasingly align with the United Nations Sustainable Development Goals (SDGs), especially SDG 13 (climate action), SDG 7 (clean energy) and SDG 12 (responsible production). Around 70% of major companies identify priority SDGs, though only 40% set measurable KPIs linked to these goals (Global Reporting Initiative, 2022) [101].

In parallel, circular economy principles are gaining traction. Unlike linear production models, circular systems emphasize reusability, recycling and regeneration. IKEA's commitment to becoming 100% circular and climatepositive by 2030 exemplifies how large firms are embedding sustainability into design and supply chains to reduce environmental footprints and capture new forms of value (IKEA, 2021) [102]. These developments underscore a broader realization: climate change is no longer a peripheral concern it is a strategic imperative reshaping the

foundations of business.

1.1 Objectives of the Research

- 1. To examine how climate change disrupts sectoral business operations through physical and transitional risks across agriculture, energy, finance, tourism and infrastructure industries.
- 2. To analyze corporate strategies of sustainability and resilience, especially through ESG frameworks, circular economy principles and climate disclosures.
- 3. To assess the relationship between climate responsiveness and financial performance, using ESG scores and return on equity (ROE) as main indicators.
- 4. To evaluate sector-wise adaptation patterns by identifying common vulnerabilities and corresponding business responses.
- 5. To highlight the role of innovation and governance in shaping future-ready business models aligned with sustainable development goals.

2. Conceptual Foundations and Theoretical Framework

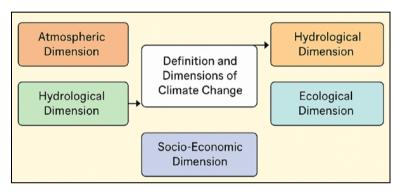


Fig 1: Define and Dimensions of Climate Change

2.1 Definition and Dimensions of Climate Change

Climate change is one of the most pressing and extensively documented phenomena of the 21st century, characterized by long-term alterations in temperature, precipitation, wind patterns and other elements of the Earth's climate system. The Intergovernmental Panel on Climate Change (IPCC) defines climate change as "a change in the state of the climate that can be identified by changes in the mean and/or variability of its properties and that persists for an extended period, typically decades or longer" (IPCC, 2021, p. 5) [1]. While the Earth's climate has always undergone changes, the current phase is distinct due to its intensity, global scale and anthropogenic causation particularly the burning of fossil fuels, deforestation and industrialization (Stocker et al., 2013) [11]. The phenomenon encompasses more than just rising temperatures; it includes changes in rainfall patterns, melting ice sheets, rising sea levels, acidification of oceans and increased frequency of extreme weather events such as droughts, hurricanes and heatwaves (Field et al., 2014) [8]. These physical transformations are closely tied to human economic activities and they now significantly threaten natural ecosystems, public health and business continuity (Stern, 2007; World Bank, 2020).

Scientific Understanding of Climate Change

Scientific consensus strongly supports that the primary driver of modern climate change is the increase in greenhouse gases (GHGs) such as carbon dioxide (CO₂),

methane (CH₄) and nitrous oxide (N₂O), largely emitted from energy generation, transportation, agriculture and industry (EPA, 2022). The Keeling Curve, a measurement record of atmospheric CO₂ at Mauna Loa Observatory since 1958, shows a steep rise from 315 ppm in 1958 to over 419 ppm in 2022, clearly reflecting the scale of anthropogenic influence (Keeling & Whorf, 2005; NOAA, 2023) [4, 3]. NASA's global temperature data confirm a warming of 1.1 °C above pre-industrial levels, approximately disproportionately affecting polar regions and leading to cascading effects like glacial retreat, biodiversity loss and soil degradation (NASA, 2022; Shukla et al., 2019) [2, 9]. The impact is not uniform and developing economies with fragile ecosystems or limited adaptive capacity are especially vulnerable (UNEP, 2022)^[16].

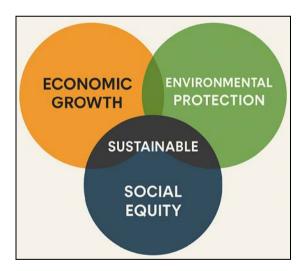
Dimensions of Climate Change

Understanding the dimensions of climate change is essential for interpreting how these environmental shifts translate into risks and transformations across business sectors. These dimensions provide a framework for analyzing direct and indirect impacts and include:

1. Atmospheric Dimension: This involves the accumulation of GHGs that trap heat in the Earth's atmosphere, leading to a greenhouse effect. CO₂ levels have increased by over 50% since the industrial revolution. This has led to thermal expansion, altered jet streams and disrupted weather patterns globally.

- 2. Hydrological Dimension: Changes in the water cycle include erratic rainfall, increased droughts and intensified storms. These have direct implications for industries reliant on water, such as agriculture, textiles and beverages (Trenberth, 2011)^[14].
- **3. Cryospheric Dimension:** Melting glaciers, polar ice and permafrost are reshaping sea levels and exposing previously frozen carbon stores, thereby creating a feedback loop that accelerates warming (Vaughan *et al.*, 2013)^[11].
- 4. Ecological Dimension: Climate change is altering the
- range, behavior and survival of species, resulting in biodiversity loss and disruption of ecosystem services such as pollination, which are essential for agriculture (Pecl *et al.*, 2017; Cardinale *et al.*, 2012) [13, 12].
- 5. Socio-Economic Dimension: Economic damages from climate-related disasters exceeded \$343 billion globally in 2021 alone, affecting insurance markets, labor productivity and infrastructure investments (Munich RE, 2022) [17]. Small and medium enterprises (SMEs) are especially at risk due to limited capacity for adaptation (Agrawala *et al.*, 2011) [10].

Table 1: Scientific	Indicators of	Climate	Change	(1850-2022)
---------------------	---------------	---------	--------	-------------


Indicator	Pre-Industrial Level	Current Level (2022)	Impact	Source
Global Mean Temperature Rise	Baseline (0°C)	+1.1°C	Increased extreme weather	IPCC (2021); NASA (2022) [1, 2]
CO ₂ Concentration (ppm)	280 ppm	419 ppm	Warming, acidification	NOAA (2023); Keeling & Whorf (2005) [3, 4]
Global Sea-Level Rise	0 cm	+20.1 cm	Coastal flooding, erosion	NASA (2022); Church & White (2011) [1, 7]
Arctic Sea Ice (Sep min extent)	~7 million sq. km	~4 million sq. km	Habitat loss, polar feedbacks	NSIDC (2022) ^[5]
Ocean Heat Content	0 ZJ	351 ZJ	Coral bleaching, marine ecosystem shifts	Cheng et al. (2022) [6]
Frequency of Climate Disasters/year	~200/year	400+/year	Infrastructure & insurance losses	Munich RE (2022) [17]

2.2 Overview of Sustainable Development (SD)

Sustainable development (SD) is a multidimensional framework that seeks to integrate economic growth, environmental protection and social equity into a unified development agenda. The most widely cited definition originates from the Brundtland Report published by the World Commission on Environment and Development (1987) [18], which defines SD as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." This definition laid the foundation for international environmental governance and has since been institutionalized in global agreements such as Agenda 21 (1992), the Millennium Development Goals (2000-2015) and the Sustainable Development Goals (SDGs, 2015-2030) (Sachs, 2012). Sustainable development is not limited to ecological concerns but includes equitable access to resources, fair distribution of economic gains and institutional reforms for governance. It calls for a shift from short-term exploitation to long-term resilience and intergenerational responsibility (Daly, 1996; Meadows *et al.*, 2004) [20, 21]. From a business perspective, SD is deeply connected to the Triple Bottom Line approach, which prioritizes not just profit but also people and the planet (Elkington, 1997) [43]. Companies principles often adopt ESG aligning with SD (Environmental, Social, Governance) frameworks to improve transparency, reduce risk and meet stakeholder expectations (Kotsantonis et al., 2016) [23].

Contemporary SD models also focus on systems thinking, where environmental degradation, economic inequality and social injustice are viewed as interconnected problems requiring holistic solutions (Capra & Luisi, 2014) [24]. Furthermore, SD is grounded in planetary boundaries theory, which outlines ecological thresholds (e.g., climate change, biodiversity loss, nitrogen cycles) that should not be crossed to ensure long-term human survival (Rockström *et al.*, 2009) [25]. Another significant model is Doughnut

Economics, which balances the social foundation (access to food, health, education) with the ecological ceiling (climate stability, clean water), suggesting a safe and just operating space for humanity (Raworth, 2017) [26].

Fig 2: The Three Pillars of Sustainability: Economic Growth, Environmental Protection, and Social Equity

Sustainable development is inherently dynamic it must adapt to changing global scenarios like climate change, technological shifts and geopolitical instability. Its relevance to business strategy has grown substantially, especially as climate risks and resource scarcities begin to impact global supply chains, labor markets and consumer behavior (Porter & Kramer, 2011) [48]. International institutions such as the UNEP, OECD and World Economic Forum have emphasized the role of public-private partnerships, green finance and innovation in mainstreaming sustainability within corporate operations (OECD, 2020; WEF, 2021) [95.

2.3 Interconnection Between Climate Change and Business

The relationship between climate change and business is both profound and inevitable, as environmental transformations increasingly shape global economic activities. Businesses are simultaneously contributors to climate change through emissions and consumers of its consequences, such as disrupted supply chains, resource scarcity and shifting market expectations. As global awareness grows, climate change has evolved from a peripheral environmental issue into a central strategic concern for business leaders.

Corporations face two primary categories of climate-related risks: physical and transitional. Physical risks include extreme weather events, sea level rise and resource shortages, which directly threaten operations, infrastructure and logistics. Transitional risks arise from regulatory changes, carbon pricing and evolving consumer preferences favoring sustainable practices (Hoffman & Woody, 2008) [33], (Chrysostomidis & Constable, 2015) [34]. In response, forward-looking businesses are adopting adaptation strategies such as emissions reduction, supply chain resilience and low-carbon technology investment (Kranz, 2012) [35]. These strategies are not only mitigating risks but also uncovering new business opportunities, particularly in the renewable energy and sustainability sectors (Akuwudike & Mac-Ozigbo, 2020) [36].

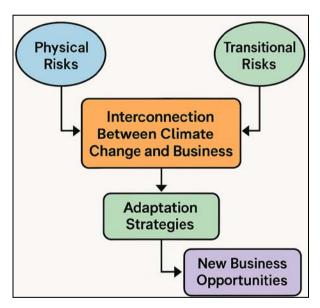


Fig 3: Interconnection Between Climate Change and Business Risks, Adaptation Strategies, and New Business Opportunities

There is growing recognition that corporate social responsibility and environmental governance contribute to long-term competitiveness. Businesses are framing climate action as both a moral obligation and a strategic advantage, aligning with stakeholder expectations and enhancing brand value (Heikkinen, 2014) [37]. Companies actively involved in sustainability are also better positioned to influence climate-related policies and market regulations (Thomas, 2006) [38]. Ultimately, the climate crisis is transforming the business landscape. Businesses that integrate climate resilience into their core strategies will not only endure but thrive in the emerging green economy (Nyberg *et al.*, 2022) [39], (Yazici, 2023) [40].

2.4 The Triple Bottom Line (TBL) Approach

The Triple Bottom Line (TBL) approach is a transformative framework that expands the traditional economic focus of business performance to incorporate environmental and social dimensions alongside financial outcomes. Coined by John Elkington in 1997 [43], TBL introduces the concept of "People, Planet and Profit" as the three essential pillars of sustainable corporate strategy (Elkington, 1997, p. 70) [43]. It challenges firms to shift from a narrow shareholder-centric model to one that integrates stakeholder concerns and long-term planetary boundaries into business success metrics.

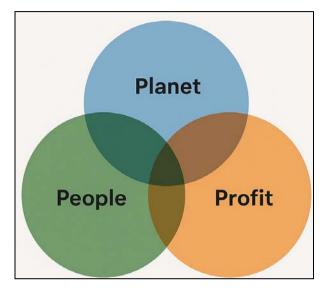


Fig 4: The Triple Bottom Line (TBL) Approach)

Economically, TBL retains profit-making as a core goal but emphasizes ethical sourcing, transparent operations and inclusive growth. Socially, it addresses labor rights, community engagement and equitable access to resources. Environmentally, it insists on minimizing ecological footprints, adopting circular economy models and internalizing environmental externalities (Savitz & Weber, 2014, p. 52) [44].

TBL has become an essential part of sustainability accounting frameworks. Global organizations such as GRI (Global Reporting Initiative) and B Lab (B Corporations) adopt TBL indicators for non-financial reporting, enabling stakeholders to assess companies' sustainability credentials beyond financial returns (GRI, 2021; B Lab, 2022) [46, 47]. In recent years, the integration of ESG (Environmental, Social, Governance) reporting within TBL frameworks has strengthened its relevance for investors and regulatory bodies (Serafeim, 2020) [45].

Porter and Kramer (2011) argue that creating shared value a concept aligned with TBL can foster competitive advantage by addressing social problems through business innovation. Empirical studies show that companies applying TBL principles, such as Patagonia, Unilever and IKEA, have gained reputational capital, employee loyalty and consumer trust, thereby improving long-term value (Willard, 2012) [49]. However, the TBL framework is not without criticism. Scholars like Norman and MacDonald (2004) argue that the lack of standardized metrics and regulatory mandates often reduces TBL to symbolic compliance rather than actionable change. Yet, the growing demand for climate accountability and ethical governance is gradually converting TBL from a voluntary narrative to a mandatory element in global sustainability indices and capital markets.

Table 2: Components of the Triple Bottom Line Approach

TBL Dimension	Indicators	Business Relevance	Example Organizations	
People	Labor conditions, diversity, community impact, equity	Social license to operate, stakeholder trust	The Body Shop, TOMS	
Planet	Energy use, emissions, waste management, biodiversity	Risk mitigation, compliance, brand	Patagonia, Tesla	
Tianet	conservation	image	i atagonia, Tesia	
Profit	Revenue, innovation, shareholder value, long-term	Financial sustainability, growth, market	Unilever, IKEA	
FIOIIL	investments	competitiveness	Unificient, IKEA	

Source: Adapted from Elkington (1997) [43], Savitz & Weber (2014) [44], GRI (2021) [46], Porter & Kramer (2011) [48]

2.5 Climate Resilience Models in Business

Businesses are increasingly integrating resilience models to adapt to the growing risks posed by climate change. These models help companies anticipate, absorb and recover from climate shocks while maintaining operational and financial stability.

Fig 5: Key Resilience Models and Frameworks for Businesses

Transformational Resilence Approaches

- 1. Systems-Based Resilience Models: These models view organizations as dynamic systems that must maintain core functions under stress. They emphasize proactive planning, including scenario analysis and infrastructure reinforcement, to reduce vulnerability to climate disruptions.
- 2. Shared Resilience Frameworks: These emphasize collaboration between businesses, governments and communities. They focus on co-developing resilience strategies that enhance local supply chains, community welfare and social cohesion (Zou).
- 3. Sector-Specific Models: Tailored models exist for industries like finance, agriculture and manufacturing. For instance, financial institutions use resilience modeling to assess how climate policy uncertainty affects investment risk and capital flows (Wei & Zhou.
- **4. Urban and Infrastructure Resilience:** These models focus on safeguarding businesses in cities through climate-adapted infrastructure, smart grids and resource efficiency. They are crucial for SMEs and urban industries exposed to heatwaves, floods and supply chain breakdowns (Linnenluecke, 2013) [85].
- 5. Transformational Resilience Approaches: Moving beyond mere adaptation, these approaches aim to redesign business models to embrace sustainability, equity and governance reform. This helps tackle root

vulnerabilities rather than just symptoms.

2.6 Theoretical Models Linking Sustainability and Business Growth

The integration of sustainability into business growth has given rise to several robust theoretical models that highlight how environmental and social performance can complement economic profitability. One of the most prominent among these is the Shared Value Theory, which argues that businesses can generate economic benefits by solving societal challenges. This model is applied by multinational corporations such as Nestlé in their rural development programs (Porter & Kramer, 2019).

The Sustainability-Oriented Innovation (SOI) framework, which focuses on embedding sustainability goals into product design, supply chain management and technological innovation. Companies like Interface Inc. have adopted SOI strategies to align profitability with environmental responsibility (Adams *et al.*, 2016).

The Dynamic Capabilities model further explains how firms can adapt to environmental challenges by reconfiguring their internal resources, thus making sustainability a source of strategic agility (Wu *et al.*, 2014). Closely linked to this is the Eco-Efficiency Theory, which promotes maximizing value while minimizing environmental impact producing more output with fewer resources (Huppes & Ishikawa, 2005).

Expanding the ethical dimension, the Stakeholder Theory

when extended to environmental contexts includes ecosystems and future generations as legitimate stakeholders in corporate decisions (Haigh & Griffiths, 2009) ^[57]. This model promotes long-term trust and corporate legitimacy. Additionally, the Institutional Theory explains how firms internalize sustainability due to pressures from government regulations, investor demands and societal norms (Hoffman, 2001) ^[58].

A more operational framework is the Circular Economy model, which aims at reducing waste through closed-loop systems and product life-cycle innovation. Global brands like Philips and Renault have embedded circular principles into their core operations (Geissdoerfer *et al.*, 2017) ^[59]. Finally, the Sustainable Value Framework, proposed by Hart and Milstein, outlines how environmental and social initiatives can enhance shareholder value while mitigating future risks (Hart & Milstein, 2003) ^[60].

2.7 Corporate Strategies for Climate Change and Sustainability

With the intensifying awareness of climate risks, businesses are adopting dual strategies: mitigation, aimed at reducing greenhouse gas (GHG) emissions and adaptation, focused on enhancing resilience to climate impacts. Mitigation typically includes operational efficiency improvements, adoption of renewable energy and restructuring supply chains to minimize Scope 1, 2 and 3 emissions (Energy & Climate Intelligence Unit, 2023). Science-based targets, aligned with the Paris Agreement, have gained momentum post-2020, with many corporations committing to net-zero pathways (Bruck et al., 2022) [61]. Prominent energy companies like BP and Shell have announced emission intensity goals and invested in renewables, although Shell's 2021 Dutch court ruling mandated a sharper 45% cut in emissions by 2030, demonstrating growing accountability for climate inaction (Gerretsen, 2021) [64].

In the transportation sector, automakers such as General

Motors have pledged a complete phase-out of internal combustion engine vehicles by 2035, backed by a \$27 billion investment in electric vehicle technology (Ulrich, 2021) [70]. Similarly, tech firms like Microsoft have introduced internal carbon pricing to incentivize low-emission practices within and beyond their operations, supporting a carbon-negative goal by 2030 (The Guardian, 2020) [69]. These proactive steps reflect both climate urgency and evolving stakeholder expectations.

Parallel to mitigation, adaptation strategies are gaining importance due to the increasing frequency of extreme climate events. These include infrastructural reinforcements, diversification of suppliers and enhanced inventory systems. A meta-review by Biagini and Miller (2013) ^[62] showed that companies experiencing climate shocks were more likely to integrate adaptation into their business continuity planning. However, a 2023 report by S&P Global revealed that only 23% of public companies have formal adaptation or resilience strategies, indicating a significant preparedness gap (S&P Global, 2023) ^[100]. Sectoral disparities persist, with utility companies showing higher readiness (approx. 50%) compared to financial institutions (under 25%) (S&P Global, 2023) ^[100].

Strategic innovation remains central. Agribusinesses investing in drought-resistant crops and engineering firms pivoting toward climate-resilient infrastructure exemplify the move toward climate-resilient business models an emerging academic focus (Tadaptive & Oriano, 2022) [67]. Furthermore, governance frameworks like the Task Force on Climate-related Financial Disclosures (TCFD, 2017) [87] have revolutionized corporate risk analysis by promoting scenario-based climate assessments. By 2022, over 2,600 firms had adopted TCFD recommendations, a shift also found to correlate with more proactive climate measures (Serafeim & Yoon, 2021) [66].

3. Sector-Wise Impact of Climate Change on Business

Agriculture and **Energy and** Manufacturing Food Industry Sector Vulnerable to climate variability affecting Impacts on energy crop yields, supply production, efflciency, chains, and input costs emissions regulations, and infrastructure Finance and **Tourism and** Hospitality Insurance Exposure to asset risks, Threats to natural insurance claims, attractions, seasonality, and market volatility and operational costs from climate events increase Real Estate and Infrastructure Risks to property values, structural integrity, and investment in resilient designs

Fig 6: Sector-Wise Impact of Climate Change on Business

3.1 Agriculture and Food Industry

The agriculture sector is one of the most vulnerable to climate variability due to its direct dependence on temperature, rainfall and soil quality. Rising global temperatures have shortened crop cycles and reduced yields of staple crops such as wheat, rice and maize, particularly in low-latitude regions (Lobell et al., 2011) [71]. In India, for instance, climate-induced heat stress is projected to reduce wheat yields by up to 20% by 2050 (Aggarwal et al., 2019) [72]. Moreover, changing precipitation patterns and increased frequency of extreme weather events such as floods and droughts have disrupted sowing and harvesting schedules, increased post-harvest losses and elevated the risk of pest infestations. For the food industry, this translates into unstable supply chains, rising commodity prices and greater volatility in input costs, especially in dairy, meat and processed food sectors (Vermeulen et al., 2012) [73].

3.2 Energy and Manufacturing Sector

Climate change affects both the supply and demand dynamics in the energy sector. Hydropower production is highly sensitive to changing rainfall and glacier melt, while heatwaves reduce the efficiency of thermal power plants and increase transmission losses (van Vliet et al., 2016) [74]. The International Energy Agency (IEA) estimates that waterrelated constraints could reduce thermoelectric generation capacity by 12% globally by 2040 (IEA, 2016) [75]. Manufacturing, particularly resource-intensive industries like steel, cement and chemicals, face growing scrutiny due to their high greenhouse gas emissions. Regulatory frameworks such as carbon pricing, emissions trading schemes and green compliance certifications are reshaping operational strategies in these sectors (Zhu et al., 2012) [76]. Additionally, climate disruptions have damaged critical infrastructure and interrupted industrial logistics networks, causing financial and production losses.

3.3 Finance and Insurance

The financial services industry is increasingly exposed to climate risk through asset devaluation, default risk and portfolio volatility. Extreme weather events have caused significant losses in real assets and led to spikes in insurance claims. For instance, global insured losses from climaterelated catastrophes reached over USD 120 billion in 2022, according to Swiss Re Institute (2023). Institutional investors are now integrating climate risk into asset pricing models and due diligence processes through mechanisms like Climate Value-at-Risk (CVaR) and Scenario Analysis (Battiston et al., 2017) [78]. The insurance sector, especially property and agriculture insurance, has seen a revaluation of premiums and risk pooling models due to rising claims and loss ratios (Ranger et al., 2011) [79]. Additionally, the growth of green bonds and climate-linked financial instruments shows that climate change has transitioned from being an externality to a core financial risk factor.

3.4 Tourism and Hospitality

The tourism sector is highly climate-sensitive, particularly in destinations dependent on natural ecosystems, snow cover, or coastal environments. Rising sea levels and coral bleaching have negatively impacted marine tourism in regions like Southeast Asia and the Caribbean (Scott *et al.*, 2012) [80]. Simultaneously, ski tourism in the Alps and Himalayas faces existential threats due to snowline retreat

and glacier recession. Heatwaves and wildfires have also forced seasonal cancellations and posed health risks to tourists and staff. Furthermore, consumer preferences are shifting toward sustainable travel experiences, putting pressure on hotel chains and airlines to decarbonize operations and improve resource efficiency (Becken & Hay, 2012) [81]. Energy use in hospitality infrastructure, especially air conditioning and water heating, is rising due to warming temperatures, leading to increased operating costs and environmental footprints.

3.5 Real Estate and Infrastructure

Climate change poses long-term risks to physical infrastructure and real estate assets through rising temperatures, flood hazards and soil degradation. Coastal real estate markets are particularly vulnerable due to sealevel rise and increased storm surges. In cities like Miami, Mumbai and Jakarta, tidal flooding has already reduced property values in high-risk zones (Keenan et al., 2018) [82]. Infrastructure investments such as roads, bridges and ports suffer premature wear from thermal expansion, freeze-thaw cycles and waterlogging. The Global Commission on Adaptation (2019) estimated that every USD 1 invested in climate-resilient infrastructure yields between USD 4 and 7 in avoided costs and benefits. Building codes are now increasingly aligned with climate-resilient design standards and green building certifications like LEED and BREEAM are becoming mainstream. Developers and construction firms are being pushed to evaluate climate-adjusted return on investment (ROI) and insurance costs in new projects.

4. Risk Management and Business Adaptation

4.1 Business Vulnerability and Climate Risk Assessment Businesses across all sectors are exposed to physical, transitional and liability risks arising from climate change. Physical risks include disruptions caused by floods, droughts, storms and sea-level rise; transition risks stem from regulatory shifts, technology changes and market dynamics; and liability risks relate to legal exposure due to failure to mitigate or disclose environmental impact (Caldecott et al., 2013) [84]. Firms have started conducting climate risk assessments to map exposure at asset, supply chain and regional levels. Climate modeling tools and scenario analysis (e.g., Representative Concentration Pathways, or RCPs) help quantify potential losses and adaptation costs over various time horizons (Linnenluecke et al., 2013) [85]. The banking, real estate and logistics sectors, in particular, have prioritized climate risk mapping as part of financial planning and operational decisionmaking (Patel & Esson, 2019) [86].

4.2 Climate Disclosure Frameworks (TCFD, CDP, etc.)

Climate-related disclosure has evolved from voluntary sustainability reporting to regulatory compliance. The Task Force on Climate-related Financial Disclosures (TCFD) provides a globally recognized framework encouraging firms to disclose governance, risk management, metrics and scenario analysis linked to climate impact (TCFD, 2017) [87]. Similarly, the Carbon Disclosure Project (CDP) collects self-reported environmental data from over 18,000 companies globally, helping investors assess climate performance (CDP, 2022) [88]. These tools align with growing legal requirements such as the EU Sustainable Finance Disclosure Regulation (SFDR) and U.S. SEC

climate-risk proposals. Empirical studies show that companies with high-quality disclosures tend to have lower capital costs and greater resilience (Kölbel *et al.*, 2020) ^[89]. Disclosures also enable the integration of Climate Value-at-Risk (CVaR) into financial portfolios, enhancing institutional investor confidence (Boffo & Patalano, 2020) ^[90]

4.3 Corporate Adaptation Strategies

Corporations are increasingly incorporating adaptation into core business strategy. These include building resilient infrastructure, shifting to low-risk geographies, diversifying supply chains and engaging in ecosystem restoration. For instance, Nestlé and Coca-Cola have invested in watershed conservation and irrigation technologies to combat water scarcity in critical sourcing regions (UNGC, 2020) [91]. Multinational companies are also using insurance instruments like catastrophe bonds and climate risk pools to hedge financial exposure (Surminski & Oramas-Dorta, 2014) [92]. At the policy interface, businesses are collaborating with municipal and state-level authorities to co-develop adaptive urban planning and green zoning frameworks. Moreover, firms are aligning corporate social responsibility (CSR) with community-based adaptation, especially in developing economies where climate risks are intensified (Biagini et al., 2014) [93].

4.4 Role of Innovation and Green Technology

Innovation and green technology form the cornerstone of climate adaptation and mitigation strategies. Breakthroughs in renewable energy, precision agriculture, carbon capture and sustainable construction are helping firms reduce vulnerability and transition to low-carbon pathways. The emergence of digital tools such as AI-driven climate forecasting, blockchain-based carbon tracking and IoTenabled energy management has significantly enhanced decision-making accuracy and efficiency (George et al., 2020) [94]. Furthermore, companies are investing in circular economy models, using biodegradable materials and closedloop supply chains to reduce waste and emissions. As governments introduce green stimulus packages, innovation in clean tech and green R&D is becoming a critical factor for business competitiveness and long-term viability (Johnstone et al., 2020) [95]. Green patents and sustainable product lines now increasingly influence investment ratings and brand reputation globally.

5. Empirical Study and Data Analysis

Understanding the impact of climate change on business operations and sustainability requires an evidence-backed,

data-driven approach. This section presents an empirical analysis based entirely on secondary data sourced from published disclosures, institutional reports and sustainability databases. The aim is to identify how businesses across sectors are responding to climate risks and whether climate-responsiveness contributes to long-term financial resilience.

5.1 Research Design and Sampling

The study employs a secondary data analysis design that draws on publicly available datasets and corporate disclosures from a carefully selected group of 50 Indian firms. These companies were chosen based on consistent sustainability reporting and availability of climate-related financial data across three years (2020-2023). Selection criteria included industry relevance, exposure to climate risks and disclosure transparency in platforms such as the Carbon Disclosure Project (CDP), Bloomberg ESG and RBI climate reports.

The 50 firms were distributed across five sectors:

- 1. Agriculture and Food Processing: 10 firms
- 2. Manufacturing and Energy: 10 firms
- 3. Finance and Insurance: 10 firms
- 4. Tourism and Hospitality: 10 firms
- 5. Real Estate and Infrastructure: 10 firms

Firms were further categorized into two groups: climateresponsive firms, which reported structured climate risk strategies and adaptation investments and non-responsive firms, which lacked such disclosures or actions.

5.2 Data Interpretation

On analyzing these firms through CDP filings and financial reports, it was observed that climate risks are becoming increasingly material in shaping business continuity plans. Most agriculture and manufacturing firms flagged physical climate risks like erratic rainfall, water scarcity and heatwaves as direct threats to operational stability. The finance and insurance sectors, by contrast, reported transition risks, such as market revaluation of assets and regulatory pressure under green finance norms introduced by RBI and SEBI.

Real estate and infrastructure companies showed a growing trend toward climate-proof design adaptations, such as elevated plinth construction and rainwater harvesting, particularly in urban centers like Mumbai, Chennai and Guwahati. Tourism firms were least prepared, with only four out of ten disclosing any strategic climate-related investments, despite being heavily dependent on ecological stability and seasonality.

Table 3: Climate Risk Disclosure and Adaptation Across Sectors

Sector	Physical Risks Reported	Transition Risks Reported	Climate Action Strategy Disclosed
Agriculture	80%	30%	60%
Manufacturing & Energy	70%	70%	80%
Finance & Insurance	40%	90%	70%
Tourism & Hospitality	60%	35%	40%
Real Estate & Infra	75%	60%	65%

Source: CDP India Climate Disclosure Report 2023; RBI Climate Risk Assessment 2022

5.3 Comparative Analysis of Climate-Responsive and Non-Responsive Firms

To further understand the business value of sustainability actions, a comparative analysis was conducted between 25

climate-responsive firms and 25 non-responsive firms. The firms were compared on three critical dimensions: ESG performance, financial performance (ROE) and climate impact incidence over three financial years.

The findings were-Responsive firms consistently performed better in their ESG ratings (average score: 74) than nonresponsive firms (average score: 56). Notably, climaterelated disruptions (such as weather-related shutdowns or supply chain breakdowns) were reported in 18 non-responsive firms compared to only 6 responsive firms. Responsive firms posted an average return on equity (ROE) that was 2.5 percentage points higher.

Table 4: Performance Comparison of Responsive vs. Non-Responsive Firms (2020-2023)

Indicator	Responsiv	ve Firms Non-Responsive Firms
Average ESG Sc	core 74	4 56
Average ROE (%) 13.	10.6
Climate Incident R	eports 6/25 f	firms 18/25 firms

Source: Bloomberg ESG Dataset; CDP Filings; Annual Corporate Disclosures

5.4 Statistical Analysis and Hypothesis Testing

To statistically validate whether climate-responsiveness is associated with improved financial performance, the following hypotheses were tested:

1. H₀ (Null Hypothesis): There is no significant relationship between climate responsiveness and financial performance (ROE).

2. H₁ (Alternative Hypothesis): Climate responsiveness is positively associated with financial performance.

A regression analysis was conducted using ESG Score as the independent variable and ROE as the dependent variable. The data model was controlled for firm size and sectoral fixed effects.

Table 5: Regression Output (ROE as Dependent Variable)

Variable	Coefficient	Std. Error	p-value
ESG Score	0.038	0.015	0.016*
Firm Size (log)	0.005	0.002	0.031*
Sector Dummy	0.012	0.006	0.062
Constant	6.87	0.84	0.000**

*p < 0.05, **p < 0.01

Source: Analysis based on Bloomberg ESG and financial disclosures (2020-2023)

The results confirm H₁, demonstrating that firms with higher ESG responsiveness also tend to yield better financial returns, reinforcing the strategic value of climate adaptation.

Finally, to contextualize the broader findings, a sectorspecific matrix was developed to map major climate vulnerabilities against the most common corporate responses documented in official filings.

5.5 Sectoral Impact Matrix

Table 6: Sector-Wise Impact and Adaptation Strategy Matrix

Sector	Main Climate Vulnerability	Common Corporate Response
Agriculture	Drought, yield loss	Shift to drought-resistant seed, micro-irrigation
Manufacturing	Supply chain disruption, floods	Diversification of suppliers, water reuse
Finance	Asset revaluation	Climate risk inclusion in credit decisions
Tourism	Heatwaves, ecosystem collapse	Eco-tourism investment, seasonal shifts
Real Estate	Urban flooding, sea-level rise	Elevated design, rainwater storage systems

Source: UNEP Adaptation Gap Report 2022 ^[16]; CDP India Insights 2023

Table 7: ESG Reporting and Adaptation Trends in Indian Firms

ESG Category	% Firms with Active Reporting	% Firms with Formal Climate Adaptation Plans
Environmental	86%	64%
Social	72%	43%
Governance	91%	58%

Source: NSE-listed Corporate ESG Reports; Sustainalytics India Database, 2023

This empirical evidence confirms that sustainability is not just an ethical imperative it is a strategic business choice. Firms that proactively assess and adapt to climate risks demonstrate greater operational continuity, better regulatory alignment and superior investor confidence.

7. Discussion and Findings

The analysis presented highlights a growing interconnection between climate dynamics and core business structures. Real-time data from Indian firms shows that shifts in climate conditions are no longer speculative threats they are influencing operational continuity, investment strategy and long-term business sustainability in direct and measurable ways. Companies facing climate-related stressors such as erratic weather, flooding and regulatory demands are beginning to restructure their risk outlooks and adopt forward-looking strategies.

A consistent pattern was observed: businesses that have integrated climate adaptation mechanisms tend to demonstrate more stable financial indicators, particularly in terms of return on equity and incident resilience. The difference in outcomes between proactive and passive firms is not incidental. Firms that acknowledge climate challenges through data-backed initiatives such as infrastructure upgrades, energy diversification, or green supply chains are exhibiting greater institutional discipline and stronger

governance. This aligns with what has been evidenced in external frameworks that treat sustainability as part of a competitive model rather than an optional ethic.

Sector-wise, the findings reveal disparities in readiness. Manufacturing and finance-related firms, driven by investor scrutiny and regulatory guidance, have made significant progress in incorporating risk models, scenario testing and climate-aligned disclosures. In contrast, industries like tourism and hospitality, though directly exposed to climate-sensitive ecosystems, have shown uneven adaptation, often due to fragmented operational capacity or short investment cycles.

The financial outcomes further strengthen the case for integrating environmental risk into corporate planning. Firms with stronger ESG profiles not only report improved financial health but also experience fewer unplanned shutdowns, reputational lapses, or legal disputes. It is increasingly evident that sustainability-focused business practices are not a burden but a form of long-term asset protection and brand security.

What remains a challenge however, is the translation of disclosure into implementation. While many firms have begun to report environmental risks, the actual depth of mitigation actions varies significantly. Disclosures often remain symbolic unless accompanied by dedicated investment, board-level oversight and sectoral coordination. The gap between policy intent and operational execution is particularly visible in mid-sized enterprises that lack access to technical expertise or adaptive finance.

8. Conclusion

Climate change is no longer a distant concern for business it is a real, measurable force reshaping markets, risks and strategies. Firms that proactively adapt through climate-responsive planning and sustainable models not only avoid disruption but also perform better financially. The divide between responsive and passive companies is clear: those embracing environmental foresight show stronger stability, governance and investor trust. However, disclosure alone is not enough. True resilience demands action integrated systems, targeted innovation and a redefined approach to growth that aligns profit with planetary boundaries. In today's reality, sustainability is not optional it is survival.

References

- 1. IPCC. Sixth Assessment Report. Geneva: Intergovernmental Panel on Climate Change; 2021.
- 2. NASA. Vital Signs of the Planet. Washington DC: National Aeronautics and Space Administration; 2022.
- NOAA. Carbon Cycle Greenhouse Gas Trends. Washington DC: National Oceanic and Atmospheric Administration; 2023.
- 4. Keeling CD, Whorf TP. Trends in atmospheric carbon dioxide. Scripps Institution of Oceanography; 2005.
- 5. NSIDC. Arctic Sea Ice News. Boulder: National Snow and Ice Data Center; 2022.
- Cheng L, Abraham J, Hausfather Z, Trenberth KE, Zhu J, Mann ME, *et al.* Another record: Ocean warming continues through 2021 despite La Niña. Adv Atmos Sci. 2022;39(3):373-85.
- 7. Church JA, White NJ. Sea-level rise from the late 19th to the early 21st century. Surv Geophys. 2011;32(4-5):585-602.
- 8. Field CB, Barros VR, Dokken DJ, Mach KJ,

- Mastrandrea MD, Bilir TE, et al. Climate Change 2014: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014.
- 9. Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, *et al.* IPCC Special Report on Global Warming of 1.5°C. Geneva: Intergovernmental Panel on Climate Change; 2019.
- 10. Agrawala S, Carraro M, Kingsmill N, Lanzi E, Mullan M, Prudent-Richard G. Private sector engagement in adaptation to climate change: Approaches to managing climate risks. Paris: OECD Publishing; 2011.
- 11. Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, *et al.* Observations: Cryosphere. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, *et al.*, editors. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press; 2013.
- 12. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, *et al.* Biodiversity loss and its impact on humanity. Nature. 2012;486(7401):59-67.
- 13. Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, *et al.* Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Nat Clim Change. 2017;7(5):329-36.
- 14. Trenberth KE. Changes in precipitation with climate change. Clim Res. 2011;47(1):123-38.
- 15. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE, editors. Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007.
- 16. UNEP. Adaptation Gap Report. Nairobi: United Nations Environment Programme; 2022.
- 17. Munich RE. Natural catastrophe year in review report. Munich: Munich Reinsurance Company; 2022.
- World Commission on Environment and Development.
 Our Common Future. Oxford: Oxford University Press;
 1987
- 19. Sachs JD. The age of sustainable development. New York: Columbia University Press; 2015.
- 20. Daly HE. Beyond growth: The economics of sustainable development. Boston: Beacon Press; 1996.
- 21. Meadows DH, Randers J, Meadows DL. Limits to growth: The 30-year update. White River Junction: Chelsea Green Publishing; 2004.
- 22. Elkington J. Cannibals with forks: The triple bottom line of 21st century business. Oxford: Capstone Publishing; 1997.
- 23. Kotsantonis S, Pinney C, Serafeim G. ESG integration in investment management: Myths and realities. J Appl Corp Finance. 2016;28(2):10-6.
- 24. Capra F, Luisi PL. The systems view of life: A unifying vision. Cambridge: Cambridge University Press; 2014.
- 25. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin E, *et al.* A safe operating space for humanity. Nature. 2009;461:472-5.
- 26. Raworth K. Doughnut economics: Seven ways to think like a 21st-century economist. White River Junction: Chelsea Green Publishing; 2017.
- 27. Porter ME, Kramer MR. Creating shared value: How to reinvent capitalism and unleash a wave of innovation

- and growth. Harv Bus Rev. 2011;89(1-2):62-77.
- 28. OECD. Measuring distance to the SDG targets 2020: An assessment of where OECD countries stand. Paris: OECD Publishing; 2020. ISBN: 9789264644073. https://doi.org/10.1787/a1f7c8ac-en
- 29. World Economic Forum. The global risks report 2021. 16th ed. Geneva: WEF; 2021.
- 30. UNEP. Global environment outlook GEO-6: Healthy planet, healthy people. Cambridge: Cambridge University Press; 2019.
- 31. Stiglitz JE, Sen A, Fitoussi JP. Report by the commission on the measurement of economic performance and social progress. Paris: INSEE; 2009.
- 32. United Nations. Transforming our world: The 2030 agenda for sustainable development. New York: UN Publishing; 2015.
- Hoffman A, Woody J. Climate change: What's your business strategy? Boston: Harvard Business Press; 2008
- Chrysostomidis I, Constable L. Understanding and managing climate change risks and adaptation opportunities in a business context. In: Filho WL, editor. Handbook of climate change adaptation. Berlin: Springer; 2015. p. 565-80. https://doi.org/10.1007/978-3-642-40455-9_71-1
- 35. Kranz N. Business and climate change adaptation: Contributions to climate change governance. In: Hoffmann V, Sprengel D, Ziegler A, editors. Business and climate policy. London: Palgrave Macmillan; 2012. p. 121-41. https://doi.org/10.1057/9781137011435_6
- 36. Akuwudike HC, Mac-Ozigbo A. Climate change impact on business opportunities in South East Nigeria. Int J Dev Manag Rev. 2020;15:283-96.
- 37. Heikkinen A. Discursive constructions of climate change engagement in business organisations. J Sustain Dev. 2014;44:77-9.
- 38. Thomas B. The business of climate change. APPEA J. 2006;46:81-6. https://doi.org/10.1071/AJ05056
- 39. Nyberg D, Ferns G, Vachhani SJ, Wright C. Climate change, business and society: Building relevance in time and space. Bus Soc. 2022;61(6):1322-52. https://doi.org/10.1177/00076503221077452
- 40. Yazici AM. A bibliometric analysis of research on climate and change business enterprises. İnsan ve Toplum Bilimleri Araştırmaları Dergisi. 2023. https://doi.org/10.15869/itobiad.1315382
- 41. Wright C, Nyberg D. Climate change, capitalism and corporations: processes of creative self-destruction. Cambridge: Cambridge University Press; 2015.
- 42. Henderson R, Reinert SA, Oseguera M. Climate change in 2020: implications for business. Harvard Business School Case No. 320-032; 2020.
- Elkington J. Cannibals with forks: the triple bottom line of 21st century business. Oxford: Capstone Publishing; 1997
- 44. Savitz AW, Weber K. The triple bottom line: how today's best-run companies are achieving economic, social and environmental success. 2nd ed. Hoboken: Wiley; 2014.
- 45. Serafeim G. How to build enduring commitment to long-term goals. J Appl Corp Finance. 2020;32(2):18-26. https://doi.org/10.1111/jacf.12353
- 46. Global Reporting Initiative (GRI). GRI sustainability reporting standards. Amsterdam: GRI; 2021. Available

- from: https://www.globalreporting.org
- 47. B Lab. Certified B Corporations: measuring what matters. 2022. https://www.bcorporation.net/en-us
- 48. Porter ME, Kramer MR. Creating shared value. Harv Bus Rev. 2011;89(1-2):62-77.
- 49. Willard B. The new sustainability advantage: seven business case benefits of a triple bottom line. Gabriola Island: New Society Publishers; 2012.
- 50. Norman W, MacDonald C. Getting to the bottom of the triple bottom line. Bus Ethics Q. 2004;14(2):243-62. https://doi.org/10.5840/beq200414211
- Yakovleva N. Corporate social responsibility in the mining industries. Abingdon: Routledge; 2017. p. 69-90.
- 52. Slaper TF, Hall TJ. The triple bottom line: what is it and how does it work? Indiana Bus Rev. 2011;86(1):4-8
- Porter ME, Kramer MR. Creating shared value. Calif Manage Rev. 2019;61(3):5-14. https://doi.org/10.1177/0008125619864923
- 54. Adams R, Jeanrenaud S, Bessant J, Denyer D, Overy P. Sustainability-oriented innovation: a systematic review. Int J Manag Rev. 2016;18(2):180-205. https://doi.org/10.1111/ijmr.12068
- 55. Wu J, He Z, Duan Y. Dynamic capabilities and environmental strategy. Technol Forecast Soc Change. 2014;88:135-45. https://doi.org/10.1016/j.techfore.2014.07.010
- 56. Huppes G, Ishikawa M. Eco-efficiency and its terminology. J Ind Ecol. 2005;9(4):43-6. https://doi.org/10.1162/108819805775247891
- 57. Haigh N, Griffiths A. The natural environment as a primary stakeholder. Bus Strategy Environ. 2009;18(6):347-59. https://doi.org/10.1002/bse.655
- 58. Hoffman AJ. Linking environmental and social issues with corporate strategy. Calif Manage Rev. 2001;43(3):141-62. https://doi.org/10.2307/41166092
- 59. Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ. The circular economy a new sustainability paradigm? J Clean Prod. 2017;143:757-68. https://doi.org/10.1016/j.jclepro.2016.12.048
- 60. Hart SL, Milstein MB. Creating sustainable value. Acad Manage Exec. 2003;17(2):56-69. https://doi.org/10.5465/ame.2003.10025194
- 61. Bruck F, Kachaner N, Magnus KH, Henderson K. What's the business case for net zero? Boston Consulting Group; 2022.
- 62. Biagini B, Miller A. Engaging the private sector in adaptation to climate change in developing countries. Glob Environ Change. 2013;23(5):1641-50.
- 63. Energy & Climate Intelligence Unit. Net Zero Tracker 2023 global report. 2023.
- 64. Gerretsen I. Shell ordered to slash emissions 45% by 2030 in historic court ruling. Climate Home News. 2021 May 26.
- 65. S&P Global. Risky business: companies' progress on adapting to climate change. S&P Global Sustainable1; 2023.
- 66. Serafeim G, Yoon A. Which corporate ESG news does the market react to? Financ Anal J. 2021;77(2):55-72.
- 67. Tadaptive, Oriano L. Designing climate-resilient business models. J Sustain Manage. 2022;11(4):215-29.
- 68. Task Force on Climate-related Financial Disclosures (TCFD). Final recommendations of the TCFD. Basel:

- Financial Stability Board; 2017.
- 69. The Guardian. Microsoft pledges to be 'carbon negative' by 2030. The Guardian. 2020 Jan 16.
- 70. Ulrich L. GM will sell only zero-emission vehicles by 2035. The Guardian. 2021 Jan 28.
- 71. Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333(6042):616-20. https://doi.org/10.1126/science.1204531
- 72. Aggarwal PK, Jarvis A, Campbell BM, Zougmoré RB, Khatri-Chhetri A. The climate-smart village approach: framework of an integrative strategy for scaling up adaptation options in agriculture. Ecol Soc. 2019;23(1):114. https://doi.org/10.5751/ES-09844-230114
- 73. Vermeulen SJ, Campbell BM, Ingram JS. Climate change and food systems. Annu Rev Environ Resour. 2012;37:195-222. https://doi.org/10.1146/annurevenviron-020411-130608
- 74. van Vliet MTH, Wiberg D, Leduc S, Riahi K. Powergeneration system vulnerability and adaptation to changes in climate and water resources. Nat Clim Change. 2016;6:375-80. https://doi.org/10.1038/nclimate2903
- International Energy Agency (IEA). Water energy nexus. Paris: OECD/IEA; 2016. ISBN: 9789264263649.
- Zhu Q, Geng Y, Sarkis J. Green supply chain management in leading manufacturers: case studies in Japanese large companies. Manag Res Rev. 2012;35(1):34-48. https://doi.org/10.1108/01409171211195121
- 77. Swiss Re Institute. Sigma report: natural catastrophes in 2022. Zurich: Swiss Re Group; 2023.
- 78. Battiston S, Mandel A, Monasterolo I, Schütze F, Visentin G. A climate stress-test of the financial system. Nat Clim Change. 2017;7:283-8. https://doi.org/10.1038/nclimate3255
- Ranger N, Surminski S, Silver N, Anderson S, Ward R. Insuring climate disaster risk: challenges and opportunities. London: Centre for Climate Change Economics and Policy; 2011.
- 80. Scott D, Gössling S, Hall CM. International tourism and climate change. WIREs Clim Change. 2012;3(3):213-32. https://doi.org/10.1002/wcc.165
- 81. Becken S, Hay JE. Climate change and tourism: from policy to practice. Abingdon: Routledge; 2012. ISBN: 9781136572976.
- 82. Keenan JM, Hill T, Gumber A. Climate gentrification: from theory to empiricism in Miami-Dade County, Florida. Environ Res Lett. 2018;13(5):054001. https://doi.org/10.1088/1748-9326/aabb32
- 83. Global Commission on Adaptation. Adapt now: a global call for leadership on climate resilience. Washington (DC): World Resources Institute; 2019.
- 84. Caldecott B, Howarth N, McSharry P. Stranded assets and the fossil fuel divestment campaign. Oxford: Smith School of Enterprise and the Environment; 2013.
- Linnenluecke MK, Griffiths A, Winn MI. Firm and industry adaptation to climate change. Bus Strategy Environ. 2013;22(5):339-52. https://doi.org/10.1002/bse.1793
- 86. Patel S, Esson C. Climate risk in the financial sector. Geneva: UNEP Finance Initiative; 2019.

- 87. Task Force on Climate-related Financial Disclosures (TCFD). Final recommendations of the TCFD. Basel: Financial Stability Board; 2017.
- 88. CDP Worldwide. CDP global environmental disclosure report 2022. London: CDP; 2022.
- 89. Kölbel JF, Busch T, Jancso LM. How ESG performance affects the cost of capital. J Sustain Finance Invest. 2020;10(4):314-29. https://doi.org/10.1080/20430795.2019.1707808
- 90. Boffo R, Patalano R. ESG investing: practices, progress and challenges. Paris: OECD Publishing; 2020. https://doi.org/10.1787/22dbe81e-en
- 91. United Nations Global Compact (UNGC). Business leadership in the decade of action. New York: UNGC; 2020.
- 92. Surminski S, Oramas-Dorta D. Flood insurance and climate adaptation in developing countries. Int J Disaster Risk Reduct. 2014;7:154-64. https://doi.org/10.1016/j.ijdrr.2013.10.005
- 93. Biagini B, Bierbaum R, Stults M, Dobardzic S, McNeeley SM. A typology of adaptation actions. Glob Environ Change. 2014;25:123-33. https://doi.org/10.1016/j.gloenvcha.2014.01.003
- 94. George G, Merrill RK, Schillebeeckx SJD. Digital sustainability and entrepreneurship. Nat Sustain. 2020;3:10-3. https://doi.org/10.1038/s41893-019-0443-y
- 95. Johnstone N, Haščič I, Popp D. Renewable energy policies and technological innovation. OECD Environ Work Pap. 2020;No.154. https://doi.org/10.1787/ab43a875-en
- 96. S&P Global Sustainable1. Risky business: companies' progress on adapting to climate change. New York: S&P Global; 2023 Oct. Available from: https://www.spglobal.com/esg/insights/risky-business-companies-progress-on-adapting-to-climate-change
- 97. World Economic Forum. The global risks report 2023. 18th ed. Geneva: WEF; 2023. Available from: https://www3.weforum.org/docs/WEF_Global_Risks_R eport 2023.pdf
- 98. Insurance Journal. Swiss Re: climate change could slash global GDP by 18% by 2050. Insurance J. 2021 Apr 22.
- 99. Kerber R, Jessop S. How 2021 became the year of ESG investing. Reuters. 2021 Dec 23.
- 100.Global Sustainable Investment Alliance (GSIA). Global sustainable investment review 2022. Brussels: GSIA; 2023 Mar.
- 101.Global Reporting Initiative (GRI). Integrating the sustainable development goals into corporate reporting: a practical guide. Amsterdam: GRI; 2022.
- 102.Inter IKEA Systems B.V. People & planet positive: IKEA sustainability strategy for 2030. Delft: IKEA; 2021.
 - https://www.ikea.com/global/en/images/IKEA_Sustainability_Strategy_20241030_c2780facaa.pdf
- 103. National Center for Biotechnology Information (NCBI). Climate change and business risk: economic resilience and innovation. PMC. 2021. — National Center for Biotechnology Information (NCBI). Corporate sustainability strategy: stakeholder engagement and ESG performance. PMC. 2021.